extension | φ:Q→Out N | d | ρ | Label | ID |
(D4xC10).1C22 = C5:3C2wrC4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).1C2^2 | 320,29 |
(D4xC10).2C22 = (C2xC20).D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).2C2^2 | 320,30 |
(D4xC10).3C22 = C23.D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).3C2^2 | 320,31 |
(D4xC10).4C22 = C23.2D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).4C2^2 | 320,32 |
(D4xC10).5C22 = C24:2Dic5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 4 | (D4xC10).5C2^2 | 320,94 |
(D4xC10).6C22 = (C22xC20):C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).6C2^2 | 320,97 |
(D4xC10).7C22 = C23:C4:5D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).7C2^2 | 320,367 |
(D4xC10).8C22 = C23:D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).8C2^2 | 320,368 |
(D4xC10).9C22 = C23.5D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).9C2^2 | 320,369 |
(D4xC10).10C22 = D5xC23:C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).10C2^2 | 320,370 |
(D4xC10).11C22 = D5xC4.D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).11C2^2 | 320,371 |
(D4xC10).12C22 = M4(2).19D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).12C2^2 | 320,372 |
(D4xC10).13C22 = D20.1D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).13C2^2 | 320,373 |
(D4xC10).14C22 = D20:1D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).14C2^2 | 320,374 |
(D4xC10).15C22 = D20.2D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).15C2^2 | 320,375 |
(D4xC10).16C22 = D20.3D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8+ | (D4xC10).16C2^2 | 320,376 |
(D4xC10).17C22 = Dic5:4D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).17C2^2 | 320,383 |
(D4xC10).18C22 = D4.D5:5C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).18C2^2 | 320,384 |
(D4xC10).19C22 = Dic5:6SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).19C2^2 | 320,385 |
(D4xC10).20C22 = Dic5.14D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).20C2^2 | 320,386 |
(D4xC10).21C22 = Dic5.5D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).21C2^2 | 320,387 |
(D4xC10).22C22 = D4:Dic10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).22C2^2 | 320,388 |
(D4xC10).23C22 = Dic10:2D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).23C2^2 | 320,389 |
(D4xC10).24C22 = D4.Dic10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).24C2^2 | 320,390 |
(D4xC10).25C22 = C4:C4.D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).25C2^2 | 320,391 |
(D4xC10).26C22 = C20:Q8:C2 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).26C2^2 | 320,392 |
(D4xC10).27C22 = D4.2Dic10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).27C2^2 | 320,393 |
(D4xC10).28C22 = Dic10.D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).28C2^2 | 320,394 |
(D4xC10).29C22 = (C8xDic5):C2 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).29C2^2 | 320,395 |
(D4xC10).30C22 = D5xD4:C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).30C2^2 | 320,396 |
(D4xC10).31C22 = (D4xD5):C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).31C2^2 | 320,397 |
(D4xC10).32C22 = D4:(C4xD5) | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).32C2^2 | 320,398 |
(D4xC10).33C22 = D4:2D5:C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).33C2^2 | 320,399 |
(D4xC10).34C22 = D4:D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).34C2^2 | 320,400 |
(D4xC10).35C22 = D10.12D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).35C2^2 | 320,401 |
(D4xC10).36C22 = D10:D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).36C2^2 | 320,402 |
(D4xC10).37C22 = D20.8D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).37C2^2 | 320,403 |
(D4xC10).38C22 = D10.16SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).38C2^2 | 320,404 |
(D4xC10).39C22 = D10:SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).39C2^2 | 320,405 |
(D4xC10).40C22 = C40:6C4:C2 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).40C2^2 | 320,406 |
(D4xC10).41C22 = C5:2C8:D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).41C2^2 | 320,407 |
(D4xC10).42C22 = D4:3D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).42C2^2 | 320,408 |
(D4xC10).43C22 = C5:(C8:2D4) | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).43C2^2 | 320,409 |
(D4xC10).44C22 = D4.D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).44C2^2 | 320,410 |
(D4xC10).45C22 = C40:5C4:C2 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).45C2^2 | 320,411 |
(D4xC10).46C22 = D4:D5:6C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).46C2^2 | 320,412 |
(D4xC10).47C22 = D20:3D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).47C2^2 | 320,413 |
(D4xC10).48C22 = D20.D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).48C2^2 | 320,414 |
(D4xC10).49C22 = C24:2D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 4 | (D4xC10).49C2^2 | 320,659 |
(D4xC10).50C22 = (C2xC10).D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).50C2^2 | 320,660 |
(D4xC10).51C22 = C4:D4.D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).51C2^2 | 320,661 |
(D4xC10).52C22 = (C2xD4).D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).52C2^2 | 320,662 |
(D4xC10).53C22 = D20:17D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).53C2^2 | 320,664 |
(D4xC10).54C22 = (C2xC10):D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).54C2^2 | 320,665 |
(D4xC10).55C22 = C4:D4:D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).55C2^2 | 320,666 |
(D4xC10).56C22 = Dic10:17D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).56C2^2 | 320,667 |
(D4xC10).57C22 = C5:2C8:23D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).57C2^2 | 320,668 |
(D4xC10).58C22 = C4.(D4xD5) | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).58C2^2 | 320,669 |
(D4xC10).59C22 = C22:C4:D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).59C2^2 | 320,680 |
(D4xC10).60C22 = C42.61D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).60C2^2 | 320,681 |
(D4xC10).61C22 = C42.62D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).61C2^2 | 320,682 |
(D4xC10).62C22 = C42.213D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).62C2^2 | 320,683 |
(D4xC10).63C22 = D20.23D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).63C2^2 | 320,684 |
(D4xC10).64C22 = C42.64D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).64C2^2 | 320,685 |
(D4xC10).65C22 = C42.214D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).65C2^2 | 320,686 |
(D4xC10).66C22 = C42.65D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).66C2^2 | 320,687 |
(D4xC10).67C22 = C42:5D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).67C2^2 | 320,688 |
(D4xC10).68C22 = D20.14D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).68C2^2 | 320,689 |
(D4xC10).69C22 = C20.16D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).69C2^2 | 320,697 |
(D4xC10).70C22 = C42.72D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).70C2^2 | 320,698 |
(D4xC10).71C22 = C20:2D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).71C2^2 | 320,699 |
(D4xC10).72C22 = C20:D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).72C2^2 | 320,700 |
(D4xC10).73C22 = C42.74D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).73C2^2 | 320,701 |
(D4xC10).74C22 = Dic10:9D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).74C2^2 | 320,702 |
(D4xC10).75C22 = C20:4SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).75C2^2 | 320,703 |
(D4xC10).76C22 = D8xDic5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).76C2^2 | 320,776 |
(D4xC10).77C22 = Dic5:D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).77C2^2 | 320,777 |
(D4xC10).78C22 = C40:5D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).78C2^2 | 320,778 |
(D4xC10).79C22 = D8:Dic5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).79C2^2 | 320,779 |
(D4xC10).80C22 = (C2xD8).D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).80C2^2 | 320,780 |
(D4xC10).81C22 = C40:11D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).81C2^2 | 320,781 |
(D4xC10).82C22 = C40.22D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).82C2^2 | 320,782 |
(D4xC10).83C22 = C40:6D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).83C2^2 | 320,784 |
(D4xC10).84C22 = Dic10:D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).84C2^2 | 320,785 |
(D4xC10).85C22 = C40:12D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).85C2^2 | 320,786 |
(D4xC10).86C22 = C40.23D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).86C2^2 | 320,787 |
(D4xC10).87C22 = SD16xDic5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).87C2^2 | 320,788 |
(D4xC10).88C22 = Dic5:3SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).88C2^2 | 320,789 |
(D4xC10).89C22 = Dic5:5SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).89C2^2 | 320,790 |
(D4xC10).90C22 = SD16:Dic5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).90C2^2 | 320,791 |
(D4xC10).91C22 = (C5xD4).D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).91C2^2 | 320,792 |
(D4xC10).92C22 = (C5xQ8).D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).92C2^2 | 320,793 |
(D4xC10).93C22 = C40.31D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).93C2^2 | 320,794 |
(D4xC10).94C22 = C40.43D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).94C2^2 | 320,795 |
(D4xC10).95C22 = D10:6SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).95C2^2 | 320,796 |
(D4xC10).96C22 = D10:8SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).96C2^2 | 320,797 |
(D4xC10).97C22 = C40:14D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).97C2^2 | 320,798 |
(D4xC10).98C22 = D20:7D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).98C2^2 | 320,799 |
(D4xC10).99C22 = Dic10.16D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).99C2^2 | 320,800 |
(D4xC10).100C22 = C40:8D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).100C2^2 | 320,801 |
(D4xC10).101C22 = C40:15D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).101C2^2 | 320,802 |
(D4xC10).102C22 = C40:9D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).102C2^2 | 320,803 |
(D4xC10).103C22 = C40.44D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).103C2^2 | 320,804 |
(D4xC10).104C22 = M4(2).D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8+ | (D4xC10).104C2^2 | 320,826 |
(D4xC10).105C22 = M4(2).13D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).105C2^2 | 320,827 |
(D4xC10).106C22 = D20.38D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).106C2^2 | 320,828 |
(D4xC10).107C22 = 2+ 1+4:D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).107C2^2 | 320,868 |
(D4xC10).108C22 = 2+ 1+4.D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).108C2^2 | 320,869 |
(D4xC10).109C22 = C24.56D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).109C2^2 | 320,1258 |
(D4xC10).110C22 = C24.32D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).110C2^2 | 320,1259 |
(D4xC10).111C22 = C24.35D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).111C2^2 | 320,1265 |
(D4xC10).112C22 = C24:5D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).112C2^2 | 320,1266 |
(D4xC10).113C22 = C24.36D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).113C2^2 | 320,1267 |
(D4xC10).114C22 = C20:(C4oD4) | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).114C2^2 | 320,1268 |
(D4xC10).115C22 = C10.682- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).115C2^2 | 320,1269 |
(D4xC10).116C22 = Dic10:19D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).116C2^2 | 320,1270 |
(D4xC10).117C22 = Dic10:20D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).117C2^2 | 320,1271 |
(D4xC10).118C22 = C4:C4.178D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).118C2^2 | 320,1272 |
(D4xC10).119C22 = C10.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).119C2^2 | 320,1273 |
(D4xC10).120C22 = C10.352+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).120C2^2 | 320,1274 |
(D4xC10).121C22 = C10.362+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).121C2^2 | 320,1275 |
(D4xC10).122C22 = C10.392+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).122C2^2 | 320,1280 |
(D4xC10).123C22 = C10.732- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).123C2^2 | 320,1283 |
(D4xC10).124C22 = C10.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).124C2^2 | 320,1286 |
(D4xC10).125C22 = C10.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).125C2^2 | 320,1287 |
(D4xC10).126C22 = C10.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).126C2^2 | 320,1288 |
(D4xC10).127C22 = C10.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).127C2^2 | 320,1290 |
(D4xC10).128C22 = C10.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).128C2^2 | 320,1291 |
(D4xC10).129C22 = C10.742- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).129C2^2 | 320,1293 |
(D4xC10).130C22 = C10.792- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).130C2^2 | 320,1320 |
(D4xC10).131C22 = C4:C4.197D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).131C2^2 | 320,1321 |
(D4xC10).132C22 = C10.802- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).132C2^2 | 320,1322 |
(D4xC10).133C22 = C10.812- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).133C2^2 | 320,1323 |
(D4xC10).134C22 = D5xC22.D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).134C2^2 | 320,1324 |
(D4xC10).135C22 = C10.1202+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).135C2^2 | 320,1325 |
(D4xC10).136C22 = C10.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).136C2^2 | 320,1326 |
(D4xC10).137C22 = C10.822- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).137C2^2 | 320,1327 |
(D4xC10).138C22 = C4:C4:28D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).138C2^2 | 320,1328 |
(D4xC10).139C22 = C10.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).139C2^2 | 320,1329 |
(D4xC10).140C22 = C10.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).140C2^2 | 320,1330 |
(D4xC10).141C22 = C10.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).141C2^2 | 320,1331 |
(D4xC10).142C22 = C10.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).142C2^2 | 320,1332 |
(D4xC10).143C22 = C10.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).143C2^2 | 320,1333 |
(D4xC10).144C22 = C10.842- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).144C2^2 | 320,1334 |
(D4xC10).145C22 = C10.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).145C2^2 | 320,1335 |
(D4xC10).146C22 = C10.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).146C2^2 | 320,1336 |
(D4xC10).147C22 = C10.852- 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).147C2^2 | 320,1337 |
(D4xC10).148C22 = C10.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).148C2^2 | 320,1338 |
(D4xC10).149C22 = C10.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).149C2^2 | 320,1339 |
(D4xC10).150C22 = C42.233D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).150C2^2 | 320,1340 |
(D4xC10).151C22 = C42.139D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).151C2^2 | 320,1343 |
(D4xC10).152C22 = D5xC4.4D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).152C2^2 | 320,1345 |
(D4xC10).153C22 = C42:18D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).153C2^2 | 320,1346 |
(D4xC10).154C22 = C42.141D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).154C2^2 | 320,1347 |
(D4xC10).155C22 = D20:10D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).155C2^2 | 320,1348 |
(D4xC10).156C22 = Dic10:10D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).156C2^2 | 320,1349 |
(D4xC10).157C22 = C42.234D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).157C2^2 | 320,1352 |
(D4xC10).158C22 = C42.143D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).158C2^2 | 320,1353 |
(D4xC10).159C22 = C42.144D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).159C2^2 | 320,1354 |
(D4xC10).160C22 = C42.166D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).160C2^2 | 320,1385 |
(D4xC10).161C22 = C42.238D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).161C2^2 | 320,1388 |
(D4xC10).162C22 = C2xD8:3D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).162C2^2 | 320,1428 |
(D4xC10).163C22 = C2xD5xSD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).163C2^2 | 320,1430 |
(D4xC10).164C22 = C2xD40:C2 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).164C2^2 | 320,1431 |
(D4xC10).165C22 = C2xSD16:D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).165C2^2 | 320,1432 |
(D4xC10).166C22 = C2xSD16:3D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).166C2^2 | 320,1433 |
(D4xC10).167C22 = D20.29D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).167C2^2 | 320,1434 |
(D4xC10).168C22 = D8:6D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).168C2^2 | 320,1447 |
(D4xC10).169C22 = D20.33C23 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).169C2^2 | 320,1508 |
(D4xC10).170C22 = C23.3D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).170C2^2 | 320,33 |
(D4xC10).171C22 = C23.4D20 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).171C2^2 | 320,34 |
(D4xC10).172C22 = C42:Dic5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).172C2^2 | 320,99 |
(D4xC10).173C22 = C42:3Dic5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 4 | (D4xC10).173C2^2 | 320,103 |
(D4xC10).174C22 = C5xC2wrC4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 4 | (D4xC10).174C2^2 | 320,156 |
(D4xC10).175C22 = C5xC23.D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).175C2^2 | 320,157 |
(D4xC10).176C22 = C5xC42:C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 4 | (D4xC10).176C2^2 | 320,158 |
(D4xC10).177C22 = C5xC42:3C4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).177C2^2 | 320,159 |
(D4xC10).178C22 = 2+ 1+4.2D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 8- | (D4xC10).178C2^2 | 320,870 |
(D4xC10).179C22 = 2+ 1+4:2D5 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 8+ | (D4xC10).179C2^2 | 320,871 |
(D4xC10).180C22 = C5xQ8:D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).180C2^2 | 320,949 |
(D4xC10).181C22 = C5xD4.8D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).181C2^2 | 320,955 |
(D4xC10).182C22 = C5xD4.9D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).182C2^2 | 320,956 |
(D4xC10).183C22 = C5xC2wrC22 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 40 | 4 | (D4xC10).183C2^2 | 320,958 |
(D4xC10).184C22 = C5xC23.7D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).184C2^2 | 320,959 |
(D4xC10).185C22 = C5xC4:D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).185C2^2 | 320,960 |
(D4xC10).186C22 = C5xC4:SD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).186C2^2 | 320,961 |
(D4xC10).187C22 = C5xD4.2D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).187C2^2 | 320,964 |
(D4xC10).188C22 = C5xQ8.D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).188C2^2 | 320,965 |
(D4xC10).189C22 = C5xC8:8D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).189C2^2 | 320,966 |
(D4xC10).190C22 = C5xC8:7D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).190C2^2 | 320,967 |
(D4xC10).191C22 = C5xC8:D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).191C2^2 | 320,969 |
(D4xC10).192C22 = C5xC8:2D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).192C2^2 | 320,970 |
(D4xC10).193C22 = C5xD4.3D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).193C2^2 | 320,972 |
(D4xC10).194C22 = C5xD4.4D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).194C2^2 | 320,973 |
(D4xC10).195C22 = C5xC22.D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).195C2^2 | 320,981 |
(D4xC10).196C22 = C5xC23.46D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).196C2^2 | 320,982 |
(D4xC10).197C22 = C5xC23.19D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).197C2^2 | 320,983 |
(D4xC10).198C22 = C5xC4.4D8 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).198C2^2 | 320,987 |
(D4xC10).199C22 = C5xC42.78C22 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).199C2^2 | 320,989 |
(D4xC10).200C22 = C5xC42.28C22 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).200C2^2 | 320,990 |
(D4xC10).201C22 = C5xC42.29C22 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).201C2^2 | 320,991 |
(D4xC10).202C22 = C5xC8:5D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).202C2^2 | 320,993 |
(D4xC10).203C22 = C5xC8:4D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).203C2^2 | 320,994 |
(D4xC10).204C22 = C5xC8.12D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).204C2^2 | 320,996 |
(D4xC10).205C22 = C5xC8:3D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).205C2^2 | 320,997 |
(D4xC10).206C22 = C5xC8.2D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).206C2^2 | 320,998 |
(D4xC10).207C22 = C42.137D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).207C2^2 | 320,1341 |
(D4xC10).208C22 = C42.138D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).208C2^2 | 320,1342 |
(D4xC10).209C22 = C42.140D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).209C2^2 | 320,1344 |
(D4xC10).210C22 = C42:20D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).210C2^2 | 320,1350 |
(D4xC10).211C22 = C42:21D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).211C2^2 | 320,1351 |
(D4xC10).212C22 = C42:22D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).212C2^2 | 320,1355 |
(D4xC10).213C22 = C42.145D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).213C2^2 | 320,1356 |
(D4xC10).214C22 = Dic10:11D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).214C2^2 | 320,1390 |
(D4xC10).215C22 = C42.168D10 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).215C2^2 | 320,1391 |
(D4xC10).216C22 = C5xC22.31C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).216C2^2 | 320,1539 |
(D4xC10).217C22 = C5xC22.33C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).217C2^2 | 320,1541 |
(D4xC10).218C22 = C5xC22.34C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).218C2^2 | 320,1542 |
(D4xC10).219C22 = C5xC22.36C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).219C2^2 | 320,1544 |
(D4xC10).220C22 = C5xQ8:6D4 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).220C2^2 | 320,1552 |
(D4xC10).221C22 = C5xC22.47C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).221C2^2 | 320,1555 |
(D4xC10).222C22 = C5xC22.49C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).222C2^2 | 320,1557 |
(D4xC10).223C22 = C5xC24:C22 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | | (D4xC10).223C2^2 | 320,1563 |
(D4xC10).224C22 = C5xC22.56C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).224C2^2 | 320,1564 |
(D4xC10).225C22 = C5xC22.57C24 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 160 | | (D4xC10).225C2^2 | 320,1565 |
(D4xC10).226C22 = C5xD4oSD16 | φ: C22/C1 → C22 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).226C2^2 | 320,1579 |
(D4xC10).227C22 = C20.50D8 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).227C2^2 | 320,634 |
(D4xC10).228C22 = C20.38SD16 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).228C2^2 | 320,635 |
(D4xC10).229C22 = D4.3Dic10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).229C2^2 | 320,636 |
(D4xC10).230C22 = C4xD4:D5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).230C2^2 | 320,640 |
(D4xC10).231C22 = C42.48D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).231C2^2 | 320,641 |
(D4xC10).232C22 = C20:7D8 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).232C2^2 | 320,642 |
(D4xC10).233C22 = D4.1D20 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).233C2^2 | 320,643 |
(D4xC10).234C22 = C4xD4.D5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).234C2^2 | 320,644 |
(D4xC10).235C22 = C42.51D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).235C2^2 | 320,645 |
(D4xC10).236C22 = D4.2D20 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).236C2^2 | 320,646 |
(D4xC10).237C22 = C2xD4:Dic5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).237C2^2 | 320,841 |
(D4xC10).238C22 = (D4xC10):18C4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).238C2^2 | 320,842 |
(D4xC10).239C22 = C2xC20.D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).239C2^2 | 320,843 |
(D4xC10).240C22 = (C2xC10):8D8 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).240C2^2 | 320,844 |
(D4xC10).241C22 = (C5xD4).31D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).241C2^2 | 320,845 |
(D4xC10).242C22 = C4oD4:Dic5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).242C2^2 | 320,859 |
(D4xC10).243C22 = C20.(C2xD4) | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).243C2^2 | 320,860 |
(D4xC10).244C22 = (D4xC10).29C4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).244C2^2 | 320,864 |
(D4xC10).245C22 = (C5xD4):14D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).245C2^2 | 320,865 |
(D4xC10).246C22 = (C5xD4).32D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).246C2^2 | 320,866 |
(D4xC10).247C22 = C4xD4:2D5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).247C2^2 | 320,1208 |
(D4xC10).248C22 = D4xDic10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).248C2^2 | 320,1209 |
(D4xC10).249C22 = D4:5Dic10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).249C2^2 | 320,1211 |
(D4xC10).250C22 = C42.106D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).250C2^2 | 320,1214 |
(D4xC10).251C22 = D4:6Dic10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).251C2^2 | 320,1215 |
(D4xC10).252C22 = C4xD4xD5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).252C2^2 | 320,1216 |
(D4xC10).253C22 = C42:11D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).253C2^2 | 320,1217 |
(D4xC10).254C22 = C42.108D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).254C2^2 | 320,1218 |
(D4xC10).255C22 = C42.228D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).255C2^2 | 320,1220 |
(D4xC10).256C22 = D4xD20 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).256C2^2 | 320,1221 |
(D4xC10).257C22 = D20:24D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).257C2^2 | 320,1223 |
(D4xC10).258C22 = Dic10:24D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).258C2^2 | 320,1225 |
(D4xC10).259C22 = D4:5D20 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).259C2^2 | 320,1226 |
(D4xC10).260C22 = D4:6D20 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).260C2^2 | 320,1227 |
(D4xC10).261C22 = C42.229D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).261C2^2 | 320,1229 |
(D4xC10).262C22 = C42.113D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).262C2^2 | 320,1230 |
(D4xC10).263C22 = C42.114D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).263C2^2 | 320,1231 |
(D4xC10).264C22 = C42.115D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).264C2^2 | 320,1233 |
(D4xC10).265C22 = C42.116D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).265C2^2 | 320,1234 |
(D4xC10).266C22 = C42.117D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).266C2^2 | 320,1235 |
(D4xC10).267C22 = C22xD4.D5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).267C2^2 | 320,1466 |
(D4xC10).268C22 = C2xD4xDic5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).268C2^2 | 320,1467 |
(D4xC10).269C22 = C2xC20.17D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).269C2^2 | 320,1469 |
(D4xC10).270C22 = C24.38D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).270C2^2 | 320,1470 |
(D4xC10).271C22 = C24.41D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).271C2^2 | 320,1477 |
(D4xC10).272C22 = C2xD4.8D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).272C2^2 | 320,1493 |
(D4xC10).273C22 = C2xD4.9D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).273C2^2 | 320,1495 |
(D4xC10).274C22 = C4oD4xDic5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).274C2^2 | 320,1498 |
(D4xC10).275C22 = C10.1062- 1+4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).275C2^2 | 320,1499 |
(D4xC10).276C22 = C10.1072- 1+4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).276C2^2 | 320,1503 |
(D4xC10).277C22 = (C2xC20):17D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).277C2^2 | 320,1504 |
(D4xC10).278C22 = C10.1482+ 1+4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).278C2^2 | 320,1506 |
(D4xC10).279C22 = C2xD4.10D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).279C2^2 | 320,1620 |
(D4xC10).280C22 = C2xC23:Dic5 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).280C2^2 | 320,846 |
(D4xC10).281C22 = (D4xC10):22C4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).281C2^2 | 320,867 |
(D4xC10).282C22 = C10xC23:C4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).282C2^2 | 320,910 |
(D4xC10).283C22 = C5xC23.C23 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).283C2^2 | 320,911 |
(D4xC10).284C22 = C10xC4.D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).284C2^2 | 320,912 |
(D4xC10).285C22 = C5xM4(2).8C22 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | 4 | (D4xC10).285C2^2 | 320,914 |
(D4xC10).286C22 = C10xD4:C4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).286C2^2 | 320,915 |
(D4xC10).287C22 = C5xC23.24D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).287C2^2 | 320,917 |
(D4xC10).288C22 = C5xC23.36D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).288C2^2 | 320,918 |
(D4xC10).289C22 = C5xC23.37D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).289C2^2 | 320,919 |
(D4xC10).290C22 = D8xC20 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).290C2^2 | 320,938 |
(D4xC10).291C22 = SD16xC20 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).291C2^2 | 320,939 |
(D4xC10).292C22 = C5xSD16:C4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).292C2^2 | 320,941 |
(D4xC10).293C22 = C5xD8:C4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).293C2^2 | 320,943 |
(D4xC10).294C22 = C5xD4:D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).294C2^2 | 320,950 |
(D4xC10).295C22 = C5xC22:SD16 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).295C2^2 | 320,951 |
(D4xC10).296C22 = C5xD4.7D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).296C2^2 | 320,953 |
(D4xC10).297C22 = C5xD4.D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).297C2^2 | 320,962 |
(D4xC10).298C22 = C5xD4:Q8 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).298C2^2 | 320,975 |
(D4xC10).299C22 = C5xD4:2Q8 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).299C2^2 | 320,977 |
(D4xC10).300C22 = C5xD4.Q8 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).300C2^2 | 320,979 |
(D4xC10).301C22 = C42.102D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).301C2^2 | 320,1210 |
(D4xC10).302C22 = C42.104D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).302C2^2 | 320,1212 |
(D4xC10).303C22 = C42.105D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).303C2^2 | 320,1213 |
(D4xC10).304C22 = C42:12D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).304C2^2 | 320,1219 |
(D4xC10).305C22 = D20:23D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).305C2^2 | 320,1222 |
(D4xC10).306C22 = Dic10:23D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).306C2^2 | 320,1224 |
(D4xC10).307C22 = C42:16D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).307C2^2 | 320,1228 |
(D4xC10).308C22 = C42:17D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).308C2^2 | 320,1232 |
(D4xC10).309C22 = C42.118D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).309C2^2 | 320,1236 |
(D4xC10).310C22 = C42.119D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).310C2^2 | 320,1237 |
(D4xC10).311C22 = C2xC23.18D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).311C2^2 | 320,1468 |
(D4xC10).312C22 = C24.42D10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).312C2^2 | 320,1478 |
(D4xC10).313C22 = C10.1042- 1+4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).313C2^2 | 320,1496 |
(D4xC10).314C22 = C10.1052- 1+4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).314C2^2 | 320,1497 |
(D4xC10).315C22 = C10.1472+ 1+4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).315C2^2 | 320,1505 |
(D4xC10).316C22 = C10xC22.D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).316C2^2 | 320,1526 |
(D4xC10).317C22 = C10xC4.4D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).317C2^2 | 320,1528 |
(D4xC10).318C22 = C5xC23.36C23 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).318C2^2 | 320,1531 |
(D4xC10).319C22 = C5xC22.26C24 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).319C2^2 | 320,1534 |
(D4xC10).320C22 = C5xC23.38C23 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).320C2^2 | 320,1538 |
(D4xC10).321C22 = C5xD4:6D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).321C2^2 | 320,1549 |
(D4xC10).322C22 = C5xQ8:5D4 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).322C2^2 | 320,1550 |
(D4xC10).323C22 = C5xC22.45C24 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 80 | | (D4xC10).323C2^2 | 320,1553 |
(D4xC10).324C22 = C5xC22.46C24 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).324C2^2 | 320,1554 |
(D4xC10).325C22 = C5xC22.50C24 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).325C2^2 | 320,1558 |
(D4xC10).326C22 = C5xC22.53C24 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).326C2^2 | 320,1561 |
(D4xC10).327C22 = SD16xC2xC10 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).327C2^2 | 320,1572 |
(D4xC10).328C22 = C10xC4oD8 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).328C2^2 | 320,1574 |
(D4xC10).329C22 = C10xC8.C22 | φ: C22/C2 → C2 ⊆ Out D4xC10 | 160 | | (D4xC10).329C2^2 | 320,1576 |
(D4xC10).330C22 = D4xC2xC20 | φ: trivial image | 160 | | (D4xC10).330C2^2 | 320,1517 |
(D4xC10).331C22 = C4oD4xC20 | φ: trivial image | 160 | | (D4xC10).331C2^2 | 320,1519 |
(D4xC10).332C22 = C5xC22.11C24 | φ: trivial image | 80 | | (D4xC10).332C2^2 | 320,1520 |
(D4xC10).333C22 = C5xC23.33C23 | φ: trivial image | 160 | | (D4xC10).333C2^2 | 320,1522 |
(D4xC10).334C22 = C5xD4xQ8 | φ: trivial image | 160 | | (D4xC10).334C2^2 | 320,1551 |
(D4xC10).335C22 = C5xD4:3Q8 | φ: trivial image | 160 | | (D4xC10).335C2^2 | 320,1556 |
(D4xC10).336C22 = C10x2- 1+4 | φ: trivial image | 160 | | (D4xC10).336C2^2 | 320,1633 |